Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.

نویسندگان

  • A C Lepore
  • I Fischer
چکیده

Fetal spinal cord from embryonic day 14 (E14/FSC) has been used for numerous transplantation studies of injured spinal cord. E14/FSC consists primarily of neuronal (NRP)- and glial (GRP)-restricted precursors. Therefore, we reasoned that comparing the fate of E14/FSC with defined populations of lineage-restricted precursors will test the in vivo properties of these precursors in CNS and allow us to define the sequence of events following their grafting into the injured spinal cord. Using tissue derived from transgenic rats expressing the alkaline phosphatase (AP) marker, we found that E14/FSC exhibited early cell loss at 4 days following acute transplantation into a partial hemisection injury, but the surviving cells expanded to fill the entire injury cavity by 3 weeks. E14/FSC grafts integrated into host tissue, differentiated into neurons, astrocytes, and oligodendrocytes, and demonstrated variability in process extension and migration out of the transplant site. Under similar grafting conditions, defined NRP/GRP cells showed excellent survival, consistent migration out of the injury site and robust differentiation into mature CNS phenotypes, including many neurons. Few immature cells remained at 3 weeks in either grafts. These results suggest that by combining neuronal and glial restricted precursors, it is possible to generate a microenvironmental niche where emerging glial cells, derived from GRPs, support survival and neuronal differentiation of NRPs within the non-neurogenic and non-permissive injured adult spinal cord, even when grafted into acute injury. Furthermore, the NRP/GRP grafts have practical advantages over fetal transplants, making them attractive candidates for neural cell replacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord.

Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differenti...

متن کامل

Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord.

Neural precursor cells (NPCs) are promising grafts for treatment of traumatic CNS injury and neurodegenerative disorders because of their potential to differentiate into neurons and glial cells. When designing clinical protocols for NPC transplantation, it is important to develop alternatives to direct parenchymal injection, particularly at the injury site. We reasoned that since it is minimall...

متن کامل

Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord.

Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted into the adult spinal cord, NSCs are r...

متن کامل

Neural Stem/Progenitor Cells from the Adult Human Spinal Cord Are Multipotent and Self-Renewing and Differentiate after Transplantation

Neural stem/progenitor cell (NSPC) transplantation is a promising therapy for spinal cord injury (SCI). However, little is known about NSPC from the adult human spinal cord as a donor source. We demonstrate for the first time that multipotent and self-renewing NSPC can be cultured, passaged and transplanted from the adult human spinal cord of organ transplant donors. Adult human spinal cord NSP...

متن کامل

Long-term fate of neural precursor cells following transplantation into developing and adult CNS.

Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplante...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 194 1  شماره 

صفحات  -

تاریخ انتشار 2005